Normal view MARC view ISBD view

QTL detection with bidirectional and unidirectional selective genotyping: marker-based and trait-based analyses

By: Navabi, A.
Contributor(s): Atlin, G.N | Bernier, J [coaut.] | Mather, D.E [coaut.] | Spaner, D.M [coaut.].
Material type: materialTypeLabelArticlePublisher: 2009ISSN: 1432-2242 (Revista en electrónico).Online resources: Access only for CIMMYT Staff In: Theoretical and Applied Genetics v. 118, no. 2, p. 347-358Summary: Selective genotyping of one or both phenotypic extremes of a population can be used to detect linkage between markers and quantitative trait loci (QTL) in situations in which full-population genotyping is too costly or not feasible, or where the objective is to rapidly screen large numbers of potential donors for useful alleles with large effects. Data may be subjected to ?trait-based? analysis, in which marker allele frequencies are compared between classes of progeny defined based on trait values, or to ?marker-based? analysis, in which trait means are compared between progeny classes defined based on marker genotypes. Here, bidirectional and unidirectional selective genotyping were simulated, using population sizes and selection intensities relevant to cereal breeding. Control of Type I error was usually adequate with marker-based analysis of variance or trait-based testing using the normal approximation of the binomial distribution. Bidirectional selective genotyping was more powerful than unidirectional. Trait-based analysis and marker-based analysis of variance were about equally powerful. With genotyping of the best 30 out of 500 lines (6%), a QTL explaining 15% of the phenotypic variance could be detected with a power of 0.8 when tests were conducted at a marker 10 cM from the QTL. With bidirectional selective genotyping, QTL with smaller effects and (or) QTL farther from the nearest marker could be detected. Similar QTL detection approaches were applied to data from a population of 436 recombinant inbred rice lines segregating for a large-effect QTL affecting grain yield under drought stress. That QTL was reliably detected by genotyping as few as 20 selected lines (4.5%). In experimental populations, selective genotyping can reduce costs of QTL detection, allowing larger numbers of potential donors to be screened for useful alleles with effects across different backgrounds. In plant breeding programs, selective genotyping can make it possible to detect QTL using even a limited number of progeny that have been retained after selection.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-5732 (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0040-5752

Selective genotyping of one or both phenotypic extremes of a population can be used to detect linkage between markers and quantitative trait loci (QTL) in situations in which full-population genotyping is too costly or not feasible, or where the objective is to rapidly screen large numbers of potential donors for useful alleles with large effects. Data may be subjected to ?trait-based? analysis, in which marker allele frequencies are compared between classes of progeny defined based on trait values, or to ?marker-based? analysis, in which trait means are compared between progeny classes defined based on marker genotypes. Here, bidirectional and unidirectional selective genotyping were simulated, using population sizes and selection intensities relevant to cereal breeding. Control of Type I error was usually adequate with marker-based analysis of variance or trait-based testing using the normal approximation of the binomial distribution. Bidirectional selective genotyping was more powerful than unidirectional. Trait-based analysis and marker-based analysis of variance were about equally powerful. With genotyping of the best 30 out of 500 lines (6%), a QTL explaining 15% of the phenotypic variance could be detected with a power of 0.8 when tests were conducted at a marker 10 cM from the QTL. With bidirectional selective genotyping, QTL with smaller effects and (or) QTL farther from the nearest marker could be detected. Similar QTL detection approaches were applied to data from a population of 436 recombinant inbred rice lines segregating for a large-effect QTL affecting grain yield under drought stress. That QTL was reliably detected by genotyping as few as 20 selected lines (4.5%). In experimental populations, selective genotyping can reduce costs of QTL detection, allowing larger numbers of potential donors to be screened for useful alleles with effects across different backgrounds. In plant breeding programs, selective genotyping can make it possible to detect QTL using even a limited number of progeny that have been retained after selection.

English

Springer

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org