Knowledge Center Catalog

Local cover image
Local cover image

New and diverse sources of multiple disease resistance in wheat

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 2009.ISSN:
  • 1435-0653 (Online)
Subject(s): Online resources: In: Crop Science v. 49, no. 5, p. 1655-1666Summary: Tan spot (caused by Pyrenophora tritici-repentis) and Stagonospora nodorum blotch (SNB), (caused by Phaeosphaeria nodorum) are destructive diseases of wheat (Triticum aestivum L.). The majority of currently grown wheat varieties are susceptible to both diseases, presumably because of high pathogenic variability occurring in these fungi or narrow genetic background for resistance in wheat varieties. Therefore, identifying new sources of tan spot and SNB resistance in wheat is imperative. A subset of 825 wheat accessions from the core collection of the National Small Grains Collection (NSGC) of the United States Department of Agriculture, National Plant Germplasm System (NPGS) was evaluated for resistance to tan spot and SNB at seedling stage in a growth chamber. On the basis of disease reactions, 88 wheat accessions exhibited resistance to both diseases. Data from the Germplasm Resources Information Network (GRIN) were examined for the 88 accessions to identify those that also have resistance toother key diseases and on this basis 28 accessions with multiple resistances were identified. The genetic relationship among the 88 accessions was assessed using resistance gene analog polymorphism (RGAP) primers. Wheat accessions with similar growth habit were grouped together despite differences in country of origin. Associations between agronomic traits and host resistance indicated that winter wheat habit in the studied collection was strongly associated with both SNB and tan spot resistance. This study identified genetically diverse wheat accessions with broad-spectrum resistance that can be used in developing cultivars with high levels of resistance to multiple diseases in wheat breeding programs.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-5553 (Browse shelf(Opens below)) Available
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

Tan spot (caused by Pyrenophora tritici-repentis) and Stagonospora nodorum blotch (SNB), (caused by Phaeosphaeria nodorum) are destructive diseases of wheat (Triticum aestivum L.). The majority of currently grown wheat varieties are susceptible to both diseases, presumably because of high pathogenic variability occurring in these fungi or narrow genetic background for resistance in wheat varieties. Therefore, identifying new sources of tan spot and SNB resistance in wheat is imperative. A subset of 825 wheat accessions from the core collection of the National Small Grains Collection (NSGC) of the United States Department of Agriculture, National Plant Germplasm System (NPGS) was evaluated for resistance to tan spot and SNB at seedling stage in a growth chamber. On the basis of disease reactions, 88 wheat accessions exhibited resistance to both diseases. Data from the Germplasm Resources Information Network (GRIN) were examined for the 88 accessions to identify those that also have resistance toother key diseases and on this basis 28 accessions with multiple resistances were identified. The genetic relationship among the 88 accessions was assessed using resistance gene analog polymorphism (RGAP) primers. Wheat accessions with similar growth habit were grouped together despite differences in country of origin. Associations between agronomic traits and host resistance indicated that winter wheat habit in the studied collection was strongly associated with both SNB and tan spot resistance. This study identified genetically diverse wheat accessions with broad-spectrum resistance that can be used in developing cultivars with high levels of resistance to multiple diseases in wheat breeding programs.

Global Wheat Program

Text in English

Crop Science Society of America (CSSA)

INT2868

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org