Knowledge Center Catalog

Local cover image
Local cover image

Short term changes in dynamics of C and N in soil when crops are cultivated on permanent raised beds

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2009.ISSN:
  • 1573-5036 (Online)
  • 0032-079X
Subject(s): Online resources: In: Plant and Soil v. 320, no. 1-2, p. 281-293635450Summary: Densely populated, intensively cropped highland areas in the subtropics are prone to erosion and declining soil fertility, making agriculture unsustainable. Permanent raised bed planting systems, as a form of conservation agriculture, have been developed to reduce production costs while conserving resources and sustaining the environment. In 2004, a new experiment with long term focus was started under rain fed conditions at El Batán (Mexico; 2,240 m a.s.l.; 19.31N, 98.50W; Cumulic Phaeozem), which aims at understanding the effects of (1) tillage (conventionally tilled or permanent raised beds), (2) residue management (retention or removal) and (3) N fertilizer application (0 or 120 kg N/ha) on N availability in a yearly maize/wheat rotation system. Incubation experiments were conducted to establish how the different treatments affect C and N dynamics in the soil. Tillage increases the availability of soil organic matter by soil aggregate disruption, enhancing C and N mineralization. Conventionally tilled raised beds with incorporation of crop residues increased the CO2 production rate. In both tillage systems, retention of maize or wheat residue without N fertilizer application led to N immobilization. In permanent raised beds, however, the immobilization due to residue retention could be compensated by application of N fertilizer, while conventionally tilled raised beds appeared to use the applied N fertilizer less efficiently.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-5528 (Browse shelf(Opens below)) 1 Available 635450
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0032-079X

Densely populated, intensively cropped highland areas in the subtropics are prone to erosion and declining soil fertility, making agriculture unsustainable. Permanent raised bed planting systems, as a form of conservation agriculture, have been developed to reduce production costs while conserving resources and sustaining the environment. In 2004, a new experiment with long term focus was started under rain fed conditions at El Batán (Mexico; 2,240 m a.s.l.; 19.31N, 98.50W; Cumulic Phaeozem), which aims at understanding the effects of (1) tillage (conventionally tilled or permanent raised beds), (2) residue management (retention or removal) and (3) N fertilizer application (0 or 120 kg N/ha) on N availability in a yearly maize/wheat rotation system. Incubation experiments were conducted to establish how the different treatments affect C and N dynamics in the soil. Tillage increases the availability of soil organic matter by soil aggregate disruption, enhancing C and N mineralization. Conventionally tilled raised beds with incorporation of crop residues increased the CO2 production rate. In both tillage systems, retention of maize or wheat residue without N fertilizer application led to N immobilization. In permanent raised beds, however, the immobilization due to residue retention could be compensated by application of N fertilizer, while conventionally tilled raised beds appeared to use the applied N fertilizer less efficiently.

Conservation Agriculture Program

Text in English

Springer

BE-KULeuven 2007 VERACHTERT B r

INT2813|CSAY01

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org