Knowledge Center Catalog

Local cover image
Local cover image

Multi-environment QTL mixed models for drought stress adaptation in wheat

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Berlin (Germany) : Springer, 2008.ISSN:
  • 1432-2242 (Online)
  • 0040-5752
Subject(s): Online resources: In: Theoretical and Applied Genetics v. 117, no. 7, p. 1077-1091635414Summary: Many quantitative trait loci (QTL) detection methods ignore QTL-by-environment interaction (QEI) and are limited in accommodation of error and environment-specific variance. This paper outlines a mixed model approach using a recombinant inbred spring wheat population grown in six drought stress trials. Genotype estimates for yield, anthesis date and height were calculated using the best design and spatial effects model for each trial. Parsimonious factor analytic models best captured the variance–covariance structure, including genetic correlations, among environments. The 1RS.1BL rye chromosome translocation (from one parent) which decreased progeny yield by 13.8 g m-2 was explicitly included in the QTL model. Simple interval mapping (SIM) was used in a genome-wide scan for significant QTL, where QTL effects were fitted as fixed environment-specific effects. All significant environment-specific QTL were subsequently included in a multi-QTL model and evaluated for main and QEI effects with non-significant QEI effects being dropped. QTL effects (either consistent or environment-specific) included eight yield, four anthesis, and six height QTL. One yield QTL co-located (or was linked) to an anthesis QTL, while another co-located with a height QTL. In the final multi-QTL model, only one QTL for yield (6 g m-2) was consistent across environments (no QEI), while the remaining QTL had significant QEI effects (average size per environment of 5.1 g m-2). Compared to single trial analyses, the described framework allowed explicit modelling and detection of QEI effects and incorporation of additional classification information about genotypes.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-5513 (Browse shelf(Opens below)) 1 Available 635414
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0040-5752

Many quantitative trait loci (QTL) detection methods ignore QTL-by-environment interaction (QEI) and are limited in accommodation of error and environment-specific variance. This paper outlines a mixed model approach using a recombinant inbred spring wheat population grown in six drought stress trials. Genotype estimates for yield, anthesis date and height were calculated using the best design and spatial effects model for each trial. Parsimonious factor analytic models best captured the variance–covariance structure, including genetic correlations, among environments. The 1RS.1BL rye chromosome translocation (from one parent) which decreased progeny yield by 13.8 g m-2 was explicitly included in the QTL model. Simple interval mapping (SIM) was used in a genome-wide scan for significant QTL, where QTL effects were fitted as fixed environment-specific effects. All significant environment-specific QTL were subsequently included in a multi-QTL model and evaluated for main and QEI effects with non-significant QEI effects being dropped. QTL effects (either consistent or environment-specific) included eight yield, four anthesis, and six height QTL. One yield QTL co-located (or was linked) to an anthesis QTL, while another co-located with a height QTL. In the final multi-QTL model, only one QTL for yield (6 g m-2) was consistent across environments (no QEI), while the remaining QTL had significant QEI effects (average size per environment of 5.1 g m-2). Compared to single trial analyses, the described framework allowed explicit modelling and detection of QEI effects and incorporation of additional classification information about genotypes.

Global Wheat Program

Text in English

INT1511

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org