Knowledge Center Catalog

Local cover image
Local cover image

Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 2007.ISSN:
  • 1435-0653 (Online)
  • 0011-183X
Subject(s): Online resources: In: Crop Science v. 47, no. S3, p. S172-S189635036Summary: While genetic resources provide an invaluable gene pool for crop breeding, the majority of accessions in germplasm collections remain uncharacterized and their potential to improve stress adaptation is not quantified. A selection of 25 elite genetic resources for wheat (Triticum aestivum L.) were characterized for agronomic and physiological trait expression in drought- and heat-stressed environments. Under drought, the physiological traits best associated with yield were canopy temperature, associated with water uptake, and carbon isotope discrimination, associated with transpiration efficiency. Under heat stress stomatal conductance, leaf chlorophyll content, and canopy temperature (associated with radiation use efficiency in this environment) were well correlated with yield. Theoretical yield gains based on extrapolating the best trait expression to the highest yielding backgrounds were also estimated. Under drought, the best expression of canopy temperature and carbon isotope discrimination suggested potential yield gains of approximately 10 and 9% above the best yielding cultivars, respectively; under heat stress, canopy temperature and remobilization of stem carbohydrates suggested potential yield gains of approximately 7 and 9%, respectively. Other physiological trait expression was associated with potential yield gains to varying degrees. When considering agronomic traits, the best expression of harvest index suggested yield gains of approximately 14 and 24% in drought and hot environments, respectively, while the combined best expression of both harvest index and final aboveground biomass suggested yield gains of 30 and 34%, respectively. Principal component analysis indicated that many of the physiological traits that were associated with yield and biomass were not strongly associated with each other, suggesting potential cumulative gene action for yield if traits were combined. When comparing trait expression across drought and hot environments, several physiological traits (e.g., canopy temperature) showed closer association with each other than did performance traits, supporting the idea that such stress-adaptive traits have generic value across stresses.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-5184 (Browse shelf(Opens below)) 1 Available 635036
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

While genetic resources provide an invaluable gene pool for crop breeding, the majority of accessions in germplasm collections remain uncharacterized and their potential to improve stress adaptation is not quantified. A selection of 25 elite genetic resources for wheat (Triticum aestivum L.) were characterized for agronomic and physiological trait expression in drought- and heat-stressed environments. Under drought, the physiological traits best associated with yield were canopy temperature, associated with water uptake, and carbon isotope discrimination, associated with transpiration efficiency. Under heat stress stomatal conductance, leaf chlorophyll content, and canopy temperature (associated with radiation use efficiency in this environment) were well correlated with yield. Theoretical yield gains based on extrapolating the best trait expression to the highest yielding backgrounds were also estimated. Under drought, the best expression of canopy temperature and carbon isotope discrimination suggested potential yield gains of approximately 10 and 9% above the best yielding cultivars, respectively; under heat stress, canopy temperature and remobilization of stem carbohydrates suggested potential yield gains of approximately 7 and 9%, respectively. Other physiological trait expression was associated with potential yield gains to varying degrees. When considering agronomic traits, the best expression of harvest index suggested yield gains of approximately 14 and 24% in drought and hot environments, respectively, while the combined best expression of both harvest index and final aboveground biomass suggested yield gains of 30 and 34%, respectively. Principal component analysis indicated that many of the physiological traits that were associated with yield and biomass were not strongly associated with each other, suggesting potential cumulative gene action for yield if traits were combined. When comparing trait expression across drought and hot environments, several physiological traits (e.g., canopy temperature) showed closer association with each other than did performance traits, supporting the idea that such stress-adaptive traits have generic value across stresses.

Global Wheat Program

Text in English

Crop Science Society of America (CSSA)

INT1511|INT2731

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org