Studying the effect of environmental variables on the genotype x environment interaction of tomato
Material type: ArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2007.ISSN:- 1573-5060 (Online)
- 0014-2336
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-4826 (Browse shelf(Opens below)) | 1 | Available | 634412 |
Browsing CIMMYT Knowledge Center: John Woolston Library shelves, Collection: CIMMYT Staff Publications Collection Close shelf browser (Hides shelf browser)
Peer review
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0014-2336
Genotype × environment interaction (GEI) affects marketable fruit yield and average fruit weight of both hybrid and open-pollinated (OP) tomato genotypes. Cultivars vary significantly for marketable fruit yield, with hybrid cultivars having, on average, higher yield than OP cultivars. However, information is scanty on environmental factors affecting the differential response of tomato genotypes across environments. Hence, the aim of this research was to use factorial regression (FR) and partial least squares (PLS) regression, which incorporate external environmental and genotypic covariables directly into the model for interpreting GEI. In this research, data from an FAO multi-environment trial comprising 15 tomato genotypes (7 hybrid and 8 OP) evaluated in 18 locations of Latin America and the Caribbean were analyzed using FR and PLS. Environmental factors such as days to harvest, soil pH, mean temperature (MET), potassium available in the soil, and phosphorus fertilizer accounted for a sizeable portion of GEI for marketable fruit yield, whereas trimming, irrigation, soil organic matter, and nitrogen and phosphorus fertilizers were important environmental covariables for explaining GEI of average fruit weight. Locations with relatively high minimum and mean temperatures favored the marketable fruit yield of OP heat-tolerant lines CL 5915-223 and CL 5915-93. An OP cultivar (Catalina) and a hybrid (Apla) showed average marketable fruit yield across environments, while two hybrids (Sunny and Luxor) exhibited outstanding marketable fruit yield in high yielding locations (due to lower temperatures and higher pH) but a sharp yield loss in poor environments. Two stable hybrid genotypes in high yielding environments, Narita and BHN-39, also showed high and stable yield in average and low yielding environments.
Genetic Resources Program
Text in English
Springer
CCJL01