Normal view MARC view ISBD view

Modeling genotype x environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes [Electronic Resource]

By: Crossa, J.
Contributor(s): Cornelius, P.L [coaut.] | Krishnamachari, A [coaut.] | McLaren, G [coaut.] | Trethowan, R.M | Burgueño, J.
Material type: materialTypeLabelArticlePublisher: 2006ISSN: 1435-0653 (Revista en electrónico).Subject(s): Genetic variation | Breeding Value | Data analysis | Plant genetic resources | Plant breedingOnline resources: Access only for CIMMYT Staff In: Crop Science v. 46, no. 4, p. 1722-1733634196Summary: In plant breeding, multienvironment trials (MET) may include sets of related genetic strains. In self-pollinated species the covariance matrix of the breeding values of these genetic strains is equal to the additive genetic covariance among them. This can be expressed as an additive relationship matrix, A, multiplied by the additive genetic variance. Using Mixed Model Methodology, the genetic covariance matrix can be estimated and Best Linear Unbiased Predictors (BLUPs) of the breeding values obtained. The effectiveness of exploiting relationships among strains tested in METs and usefulness of these BLUPs of breeding values for simultaneously modeling the main effects of genotypes and genotype x environment interaction (GE) have not been thoroughly studied. In this study, we obtained BLUPs of breeding values using genetic variance–covariance structures constructed as the Kroneker product (direct product) of a structured matrix of genetic variances and covariances for sites and a matrix of genetic relationships between strains, A. Results are compared with those from traditional fixed effects and random effects models for studying GE ignoring genetic relationships. A CIMMYT international wheat trial was used for illustration. Results showed that direct products of factor analytic structures with matrix A efficiently model the main effects of genotypes and GE. These models showed the lowest standard error of the BLUPs [SE(BLUP)] of breeding values. Genotypes that were related to other genotypes had small SE(BLUP). Related genotypes can clearly be visualized in biplots.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-4770 (Browse shelf) 1 Available 634196
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

In plant breeding, multienvironment trials (MET) may include sets of related genetic strains. In self-pollinated species the covariance matrix of the breeding values of these genetic strains is equal to the additive genetic covariance among them. This can be expressed as an additive relationship matrix, A, multiplied by the additive genetic variance. Using Mixed Model Methodology, the genetic covariance matrix can be estimated and Best Linear Unbiased Predictors (BLUPs) of the breeding values obtained. The effectiveness of exploiting relationships among strains tested in METs and usefulness of these BLUPs of breeding values for simultaneously modeling the main effects of genotypes and genotype x environment interaction (GE) have not been thoroughly studied. In this study, we obtained BLUPs of breeding values using genetic variance–covariance structures constructed as the Kroneker product (direct product) of a structured matrix of genetic variances and covariances for sites and a matrix of genetic relationships between strains, A. Results are compared with those from traditional fixed effects and random effects models for studying GE ignoring genetic relationships. A CIMMYT international wheat trial was used for illustration. Results showed that direct products of factor analytic structures with matrix A efficiently model the main effects of genotypes and GE. These models showed the lowest standard error of the BLUPs [SE(BLUP)] of breeding values. Genotypes that were related to other genotypes had small SE(BLUP). Related genotypes can clearly be visualized in biplots.

Genetic Resources Program

English

Crop Science Society of America (CSSA)

INT3239|CCJL01

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org