Knowledge Center Catalog

Local cover image
Local cover image

Genetic and physical mapping of photoperiod insensitive gene Ppd-B1 in common wheat

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2004.ISSN:
  • 1573-5060 (Online)
  • 0014-2336
Subject(s): Online resources: In: Euphytica v. 138, no. 1, p. 33-40630385Summary: Photoperiod response is a major determinant of duration of growing stages in wheat. Conscious selection for these photoperiod response genes in plant breeding programs will yield genotypes with better adaptation to diverse environments. To provide a starting point for the development of molecular markers useful for the selection process, genetic maps around the photoperiod insensitive gene Ppd-B1 were built employing three segregating populations. Of 25 markers that were selected for the Ppd-B1 region, only two could be mapped across all three populations. In pairwise comparisons, the extent of transferable markers ranged from three to eight. Recombination frequencies of markers distal to Ppd-B1 were more homogeneous than those of proximal markers. This finding suggested a closer proximity of Ppd-B1 to the markers that were mapped distal to breakpoint 0.83 in the physical map of chromosome 2BS.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0014-2336

Photoperiod response is a major determinant of duration of growing stages in wheat. Conscious selection for these photoperiod response genes in plant breeding programs will yield genotypes with better adaptation to diverse environments. To provide a starting point for the development of molecular markers useful for the selection process, genetic maps around the photoperiod insensitive gene Ppd-B1 were built employing three segregating populations. Of 25 markers that were selected for the Ppd-B1 region, only two could be mapped across all three populations. In pairwise comparisons, the extent of transferable markers ranged from three to eight. Recombination frequencies of markers distal to Ppd-B1 were more homogeneous than those of proximal markers. This finding suggested a closer proximity of Ppd-B1 to the markers that were mapped distal to breakpoint 0.83 in the physical map of chromosome 2BS.

Text in English

0411|Springer|AL-ABC Program

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org