Normal view MARC view ISBD view

Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex?

By: Souza, V.
Contributor(s): Hudson, R.R [coaut.] | Lenski, R.E [coaut.] | Nguyen, T.T [coaut.] | Pinero, D [coaut.].
Material type: materialTypeLabelArticlePublisher: 1992ISSN: 0027-8424.Subject(s): America | Bacteria | Enterobacteriaceae | Latin America | Leguminosae | North America | Papilionoideae | Plant physiology Nutrition | Polymorphism | Rhizobiaceae | Rhizobium | Soil biologyDDC classification: 93-045594 In: Proceedings of the Natural Academy of Sciences (PNAS) v. 89, no. 17, p. 8389-8393Summary: Many bacterial species exhibit strong linkage disequilibrium of their chromosomal genes, which apparently indicates restricted recombination between alleles at different loci. The extent to which restricted recombination reflects limited migration between geographically isolated populations versus infrequent mixis of genotypes within populations is more difficult to determine. We examined the genetic structure of Rhizobium leguminosarum biovar phaseoli populations associated with wild and cultivated beans (Phaseolus spp.) over several spatial scales, ranging from individual host plants to throughout the Western Hemisphere. We observed significant linkage disequilibrium at scales at least as small as a cultivated plot. However, the amount of disequilibrium was much greater among isolates collected throughout the Western Hemisphere than among isolates from one area of Mexico, even when disequilibrium was quantified using an index that scales for allelic diversity. This finding suggests that limited migration between populations contributes substantially to linkage disequilibrium in Rhizobium. We also compared the genetic structure for R. leguminosarum bv. phaseoli taken from a cultivated plot with that for Escherichia coli obtained from one human host in an earlier study. Even at this fine scale, linkage disequilibrium in E. coli was very near the theoretical maximum level, whereas it was much less extreme in the local population of Rhizobium. Thus, the genetic structure for R. leguminosarum bv. phaseoli does not exclude the possibility of frequent mixis within local populationsCollection: AGRIS Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

AGRIS Collection 93-045594 (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0027-8424

references US (DNAL 500 N21P)

Many bacterial species exhibit strong linkage disequilibrium of their chromosomal genes, which apparently indicates restricted recombination between alleles at different loci. The extent to which restricted recombination reflects limited migration between geographically isolated populations versus infrequent mixis of genotypes within populations is more difficult to determine. We examined the genetic structure of Rhizobium leguminosarum biovar phaseoli populations associated with wild and cultivated beans (Phaseolus spp.) over several spatial scales, ranging from individual host plants to throughout the Western Hemisphere. We observed significant linkage disequilibrium at scales at least as small as a cultivated plot. However, the amount of disequilibrium was much greater among isolates collected throughout the Western Hemisphere than among isolates from one area of Mexico, even when disequilibrium was quantified using an index that scales for allelic diversity. This finding suggests that limited migration between populations contributes substantially to linkage disequilibrium in Rhizobium. We also compared the genetic structure for R. leguminosarum bv. phaseoli taken from a cultivated plot with that for Escherichia coli obtained from one human host in an earlier study. Even at this fine scale, linkage disequilibrium in E. coli was very near the theoretical maximum level, whereas it was much less extreme in the local population of Rhizobium. Thus, the genetic structure for R. leguminosarum bv. phaseoli does not exclude the possibility of frequent mixis within local populations

English

AGRIS Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org