Normal view MARC view ISBD view

Meiosis and fertility of F1 hybrids between hexaploid bread wheat and decaploid tall wheatgrass (Thinopyrum ponticum)

By: Jauhar, P.P.
Material type: materialTypeLabelArticlePublisher: 1995ISSN: 1432-2242 (Revista en electrónico); 0040-5752.Subject(s): Biological development | Biological properties | Breeding methods | Cell division | Genetic engineering | Gramineae | Hybridization | Luteoviruses | Plant diseases | Plant genetics and breeding | Plant viruses | Resistance to injurious factors | Viruses AGROVOC | TriticumDDC classification: 97-090991 In: Theoretical and Applied Genetics v. 90, no. 6, p. 865-871Summary: As the first step in the transfer of barely yellow dwarf virus resistance and salt tolerance from decaploid tall wheatgrass (Thinopyrum ponticum) into hexaploid bread wheat (Triticum aestivum L.), octoploid intergeneric hybrids (2n=8x=56) were synthesized by crossing the tall wheatgrass cultivar 'Alkar' with wheat cvs. 'Fukuhokomugi' ('Fuko') and 'Chinese Spring'. ('Fuko' x 'Alkar') F1 hybrids were studied in detail. The F1 hybrids were perennial and generally resembled the male wheatgrass parent with regard to morphological features and gliadin profile. Most hybrids were euploid with 56 chromosomes and showed high chromosome pairing. On an average, in 6 hybrids 83.6% of the complement showed chiasmatic association, some between wheat and wheatgrass chromosomes. Such a high homoeologous pairing would be obtained if Ph1, the major homoeologous pairing suppressor in wheat, was somehow inactivated. Some of the 'Fuko' x 'Alkar' hybrids had high pollen fertility (18.5-42.0% with a mean of 31.5%) and high seed fertility (3-29 seeds with a mean of 12.3 seeds per spike), offering excellent opportunities for their direct backcrossing onto the wheat parentCollection: AGRIS Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

AGRIS Collection 97-090991 (Browse shelf) Available
Total holds: 0

12 ill., 3 tables; 23 ref. Summary (En)

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0040-5752

As the first step in the transfer of barely yellow dwarf virus resistance and salt tolerance from decaploid tall wheatgrass (Thinopyrum ponticum) into hexaploid bread wheat (Triticum aestivum L.), octoploid intergeneric hybrids (2n=8x=56) were synthesized by crossing the tall wheatgrass cultivar 'Alkar' with wheat cvs. 'Fukuhokomugi' ('Fuko') and 'Chinese Spring'. ('Fuko' x 'Alkar') F1 hybrids were studied in detail. The F1 hybrids were perennial and generally resembled the male wheatgrass parent with regard to morphological features and gliadin profile. Most hybrids were euploid with 56 chromosomes and showed high chromosome pairing. On an average, in 6 hybrids 83.6% of the complement showed chiasmatic association, some between wheat and wheatgrass chromosomes. Such a high homoeologous pairing would be obtained if Ph1, the major homoeologous pairing suppressor in wheat, was somehow inactivated. Some of the 'Fuko' x 'Alkar' hybrids had high pollen fertility (18.5-42.0% with a mean of 31.5%) and high seed fertility (3-29 seeds with a mean of 12.3 seeds per spike), offering excellent opportunities for their direct backcrossing onto the wheat parent

English

Springer

AGRIS Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org