Knowledge Center Catalog

Local cover image
Local cover image

Statistical methods for classifying genotypes

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2004.ISSN:
  • 1573-5060 (Online)
  • 0014-2336
Subject(s): Online resources: In: Euphytica v. 137, no. 1, p. 19-37630219Summary: In genetic resource conservation and plant breeding, multivariate data on continuous and categorical traits are collected with the objective of selecting genotypes and accessions that best represent the entire population or gene collection with the minimum loss of genetic diversity. Therefore, the best numerical classification strategy is the one that produces the most compact and well-separated groups, that is, minimum variability within each group and maximum variability among groups. In this study, we review geometric classification techniques as well as statistical models based on mixed distribution models. The two-stage sequential clustering strategy uses all variables, continuous and categorical, and it tends to form more homogeneous groups of individuals than other clustering strategies. The sequential clustering strategy can be applied to three-way data comprising genotypes × environments × attributes. This approach groups genotypes with consistent responses for most of the continuous and categorical traits across environments.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0014-2336

In genetic resource conservation and plant breeding, multivariate data on continuous and categorical traits are collected with the objective of selecting genotypes and accessions that best represent the entire population or gene collection with the minimum loss of genetic diversity. Therefore, the best numerical classification strategy is the one that produces the most compact and well-separated groups, that is, minimum variability within each group and maximum variability among groups. In this study, we review geometric classification techniques as well as statistical models based on mixed distribution models. The two-stage sequential clustering strategy uses all variables, continuous and categorical, and it tends to form more homogeneous groups of individuals than other clustering strategies. The sequential clustering strategy can be applied to three-way data comprising genotypes × environments × attributes. This approach groups genotypes with consistent responses for most of the continuous and categorical traits across environments.

Genetic Resources Program

Text in English

0409|Springer|AL-Biometrics Program

CCJL01

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org