Statistical methods for classifying genotypes
Material type: ArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2004.ISSN:- 1573-5060 (Online)
- 0014-2336
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-4178 (Browse shelf(Opens below)) | 1 | Available | 630219 |
Browsing CIMMYT Knowledge Center: John Woolston Library shelves, Collection: CIMMYT Staff Publications Collection Close shelf browser (Hides shelf browser)
Peer review
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0014-2336
In genetic resource conservation and plant breeding, multivariate data on continuous and categorical traits are collected with the objective of selecting genotypes and accessions that best represent the entire population or gene collection with the minimum loss of genetic diversity. Therefore, the best numerical classification strategy is the one that produces the most compact and well-separated groups, that is, minimum variability within each group and maximum variability among groups. In this study, we review geometric classification techniques as well as statistical models based on mixed distribution models. The two-stage sequential clustering strategy uses all variables, continuous and categorical, and it tends to form more homogeneous groups of individuals than other clustering strategies. The sequential clustering strategy can be applied to three-way data comprising genotypes × environments × attributes. This approach groups genotypes with consistent responses for most of the continuous and categorical traits across environments.
Genetic Resources Program
Text in English
0409|Springer|AL-Biometrics Program
CCJL01