Knowledge Center Catalog

Local cover image
Local cover image

Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: 2002. Dordrecht (Netherlands) : Springer,ISSN:
  • 0014-2336
  • 1573-5060 (Online)
Subject(s): In: Euphytica v. 124, p. 293-306Summary: 124 wheat cultivars and breeding lines were screened with 19 microsatellite (SSR) loci generating 160 scorable bands which were used to construct a genetic distance (GD) matrix. A distance matrix based on coefficient of parentage (COP) scores was also generated for the cultivars for which good pedigree records were available. The SSR and COP data for 101 of the wheat cultivars were compared with genetic distance scores obtained using1898 scorable restriction fragment length polymorphism (RFLP) bands previously generated. Phylograms were generated based on the SSR, RFLP,combined SSR and RFLP and COP data. The standardised Mantel's Z test showed that the distance matrices generated from all of the data sets were significantly correlated. Bootstrap analysis showed that, although the SSR and RFLP data were correlated, a large number of SSR loci are required for determining robust genetic relationships between large numbers of cultivars. In addition, accurate pedigree records are needed to determine genetic relatedness using COP. The molecular data were also used to determine the level of genetic variability within breeding programs and to assess the impact of the introduction of semidwarf and other germplasm. The results showed that the level of genetic diversity in Australian wheat cultivars has increased over time and that in particular, the introduction of semidwarf germplasm resulted in an increase in the overall diversity.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-4106 (Browse shelf(Opens below)) 1 Available 630115
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0014-2336

124 wheat cultivars and breeding lines were screened with 19 microsatellite (SSR) loci generating 160 scorable bands which were used to construct a genetic distance (GD) matrix. A distance matrix based on coefficient of parentage (COP) scores was also generated for the cultivars for which good pedigree records were available. The SSR and COP data for 101 of the wheat cultivars were compared with genetic distance scores obtained using1898 scorable restriction fragment length polymorphism (RFLP) bands previously generated. Phylograms were generated based on the SSR, RFLP,combined SSR and RFLP and COP data. The standardised Mantel's Z test showed that the distance matrices generated from all of the data sets were significantly correlated. Bootstrap analysis showed that, although the SSR and RFLP data were correlated, a large number of SSR loci are required for determining robust genetic relationships between large numbers of cultivars. In addition, accurate pedigree records are needed to determine genetic relatedness using COP. The molecular data were also used to determine the level of genetic variability within breeding programs and to assess the impact of the introduction of semidwarf and other germplasm. The results showed that the level of genetic diversity in Australian wheat cultivars has increased over time and that in particular, the introduction of semidwarf germplasm resulted in an increase in the overall diversity.

Text in English

0408|Springer|AL-Wheat Program

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org