Knowledge Center Catalog

Local cover image
Local cover image

Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Ontario (Canada) : National Research Council of Canada, 2004.ISSN:
  • 1480-3321 (Online)
  • 0831-2796
Subject(s): Online resources: In: Genome v. 47, no. 3, p. 493-500629937Summary: One of the major environmental factors limiting plant productivity is lack of water. This is especially true for the major cereals maize, rice, and wheat, which demonstrate a range of susceptibility to moisture deficit. Although conventional breeding and marker-assisted selection are being used to develop varieties more tolerant to water stress, these methods are time and resource consuming and germplasm dependent. Genetic engineering is attractive because of its potential to improve abiotic stress tolerance more rapidly. Transcription factors have been shown to produce multiple phenotypic alterations, many of which are involved in stress responses. DREB1A, a transcription factor that recognizes dehydration response elements, has been shown in Arabidopsis thaliana to play a crucial role in promoting the expression of drought-tolerance genes. In our efforts to enhance drought tolerance in wheat, the A. thaliana DREB1A gene was placed under control of a stress-inducible promoter from the rd29A gene and transferred via biolistic transformation into bread wheat. Plants expressing the DREB1A gene demonstrated substantial resistance to water stress in comparison with checks under experimental greenhouse conditions, manifested by a 10-day delay in wilting when water was withheld.Key words: Wheat transformation, MPB Bobwhite 26, DREB1A, rd29 promoter, moisture stress tolerance.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0831-2796

One of the major environmental factors limiting plant productivity is lack of water. This is especially true for the major cereals maize, rice, and wheat, which demonstrate a range of susceptibility to moisture deficit. Although conventional breeding and marker-assisted selection are being used to develop varieties more tolerant to water stress, these methods are time and resource consuming and germplasm dependent. Genetic engineering is attractive because of its potential to improve abiotic stress tolerance more rapidly. Transcription factors have been shown to produce multiple phenotypic alterations, many of which are involved in stress responses. DREB1A, a transcription factor that recognizes dehydration response elements, has been shown in Arabidopsis thaliana to play a crucial role in promoting the expression of drought-tolerance genes. In our efforts to enhance drought tolerance in wheat, the A. thaliana DREB1A gene was placed under control of a stress-inducible promoter from the rd29A gene and transferred via biolistic transformation into bread wheat. Plants expressing the DREB1A gene demonstrated substantial resistance to water stress in comparison with checks under experimental greenhouse conditions, manifested by a 10-day delay in wilting when water was withheld.Key words: Wheat transformation, MPB Bobwhite 26, DREB1A, rd29 promoter, moisture stress tolerance.

Global Wheat Program

Text in English

0406|AL-Maize Program|AL-Wheat Program

INT1511

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org