Knowledge Center Catalog

Local cover image
Local cover image

Pyramiding and validation of quantitative trait locus (QTL) alleles determining resistance to barley stripe rust : effects on adult plant resistance

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 2003.ISSN:
  • 1435-0653 (Online)
Subject(s): Online resources: In: Crop Science v. 43, no. 6, p. 2234-2239636551Summary: The use of molecular and quantitative trait locus (QTL) analysis tools initially lent support to the idea that relatively few genetic factors were the principal determinants of complex traits, including quantitative resistance (QR) to plant diseases. However, there are concerns regarding bias in QTL estimation and reproducibility of QTL effects in different genetic backgrounds. We are interested in mapping determinants of QR, and pyramiding resistance alleles at QTL loci may lead to durable resistance as well as provide independent validation of QTL effects and estimation of QTL interactions. We used molecular marker information to validate effects of resistance alleles at three QTL conferring QR to barley stripe rust (caused by Puccinia striiformis West. f. sp. hordei). Two of the QTL [one on chromosome 4(4H) and one on chromosome 7(5H)] trace to one parent, while another QTL on chromosome 5(1H) traces to a different parent. The pyramids of these QR alleles provide independent estimates of QTL effects, influence of genetic background on QTL effects, QTL × QTL interaction, and QTL × environment interaction. Our results validate QTL effect estimates, showing that a small number of QTL explained 94% of the genetic variation in trait expression in a new genetic background. Original QTL estimates were quantitatively biased, but that did not preclude the achievement of selection responses. We also confirmed the additive effects of the QTL alleles, as well as the consistent effects of QTL alleles across environments.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-3905 (Browse shelf(Opens below)) 1 Available 636551
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

The use of molecular and quantitative trait locus (QTL) analysis tools initially lent support to the idea that relatively few genetic factors were the principal determinants of complex traits, including quantitative resistance (QR) to plant diseases. However, there are concerns regarding bias in QTL estimation and reproducibility of QTL effects in different genetic backgrounds. We are interested in mapping determinants of QR, and pyramiding resistance alleles at QTL loci may lead to durable resistance as well as provide independent validation of QTL effects and estimation of QTL interactions. We used molecular marker information to validate effects of resistance alleles at three QTL conferring QR to barley stripe rust (caused by Puccinia striiformis West. f. sp. hordei). Two of the QTL [one on chromosome 4(4H) and one on chromosome 7(5H)] trace to one parent, while another QTL on chromosome 5(1H) traces to a different parent. The pyramids of these QR alleles provide independent estimates of QTL effects, influence of genetic background on QTL effects, QTL × QTL interaction, and QTL × environment interaction. Our results validate QTL effect estimates, showing that a small number of QTL explained 94% of the genetic variation in trait expression in a new genetic background. Original QTL estimates were quantitatively biased, but that did not preclude the achievement of selection responses. We also confirmed the additive effects of the QTL alleles, as well as the consistent effects of QTL alleles across environments.

Text in English

0401|Crop Science Society of America (CSSA)|AL-ABC Program

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org