Knowledge Center Catalog

Local cover image
Local cover image

Coincident QTL which determine seedling and adult plant resistance to strip rust in barley

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 2002.ISSN:
  • 1435-0653 (Online)
Subject(s): Online resources: In: Crop Science v. 42, no. 5, p. 1701-1708631533Summary: Barley stripe rust (caused by Puccinia striiformis Westend. f. sp. hordei) is an important disease of barley (Hordeum vulgare L. subsp. vulgare). This disease reached the Americas in 1975. It is now endemic from the Andean region of South America to western North America. We are systematically mapping quantitative resistance genes present in ICARDA/CIMMYT germplasm and introgressing these genes into barley germplasm adapted to western North America. Resistance to stripe rust in the Triticeae can be race- and growth-stage specific. In this study, we mapped genes conferring resistance at the seedling stage, after inoculation with defined isolates (PSH-1, PSH-13, PSH-14), in a doubled haploid population in which adult plant resistance genes had previously been mapped. The disease reaction data for each of three isolates fit a 3:1 (susceptible: resistant) ratio, indicating that two genes are required for resistance. Quantitative trait loci (QTL) effects and significance were estimated by means of QTL mapping procedures and logistic regression analysis, taking into account the binomial distribution of the trait. Two resistance QTL—one on chromosome 5 (5H) and one on chromosome 6 (6H)—were detected and in all cases ‘Shyri’ contributed the resistance alleles. No QTL × race interaction was detected. The two seedling resistance QTL map to the same regions of the genome as two of the four adult plant resistance QTL. These data lay the foundation for more detailed analyses directed at unraveling the genetics of qualitative and quantitative disease resistance mechanisms.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-3466 (Browse shelf(Opens below)) 1 Available 631533
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

Barley stripe rust (caused by Puccinia striiformis Westend. f. sp. hordei) is an important disease of barley (Hordeum vulgare L. subsp. vulgare). This disease reached the Americas in 1975. It is now endemic from the Andean region of South America to western North America. We are systematically mapping quantitative resistance genes present in ICARDA/CIMMYT germplasm and introgressing these genes into barley germplasm adapted to western North America. Resistance to stripe rust in the Triticeae can be race- and growth-stage specific. In this study, we mapped genes conferring resistance at the seedling stage, after inoculation with defined isolates (PSH-1, PSH-13, PSH-14), in a doubled haploid population in which adult plant resistance genes had previously been mapped. The disease reaction data for each of three isolates fit a 3:1 (susceptible: resistant) ratio, indicating that two genes are required for resistance. Quantitative trait loci (QTL) effects and significance were estimated by means of QTL mapping procedures and logistic regression analysis, taking into account the binomial distribution of the trait. Two resistance QTL—one on chromosome 5 (5H) and one on chromosome 6 (6H)—were detected and in all cases ‘Shyri’ contributed the resistance alleles. No QTL × race interaction was detected. The two seedling resistance QTL map to the same regions of the genome as two of the four adult plant resistance QTL. These data lay the foundation for more detailed analyses directed at unraveling the genetics of qualitative and quantitative disease resistance mechanisms.

Text in English

0210|Crop Science Society of America (CSSA)|AL-Wheat Program|Al-ABC Program|R01JOURN

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org