Knowledge Center Catalog

Local cover image
Local cover image

Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 2000.ISSN:
  • 1435-0653 (Online)
  • 0011-183X
Subject(s): In: Crop Science v. 40, no. 3, p. 815-823628352Summary: The genetic base of soybean [Glycine max (L.) Merr.] cultivars developed for North America is very narrow. This may threaten the ability of breeders to sustain improvement and increase vulnerability of the crop to pests. The objective of this research was to assess the relationship of 18 major ancestors of North American soybean germplasm with 87 plant introductions (PIs) that are potential new sources of genetic variation for soybean breeding programs. Genetic distances (GD) among the 105 genotypes analyzed were calculated from 109 polymorphic DNA fragments amplified with random oligonucleotide primers and simple sequence repeat (SSR) primer pairs. Two hierarchical clustering algorithms were combined with data resampling and multidimensional scaling (MDS) to evaluate relationships among the genotypes. Genetic distances ranged from 0.08 to 0.76, with a mean of 0.52. Genotypes were placed in 11 clusters on the basis of a consensus of the different methods utilized. Co-occurrence values calculated from the resampling iterations showed that the stability of clusters varied. The most stable grouping was among ancestors that corresponded with known relationships based on pedigree and maturity. Several groups of PIs are distinct from the majority of the ancestors. These genotypes may be useful to breeders wanting to utilize genetically diverse introductions in soybean improvement.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-2974 (Browse shelf(Opens below)) 1 Available 628352
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

Peer review

The genetic base of soybean [Glycine max (L.) Merr.] cultivars developed for North America is very narrow. This may threaten the ability of breeders to sustain improvement and increase vulnerability of the crop to pests. The objective of this research was to assess the relationship of 18 major ancestors of North American soybean germplasm with 87 plant introductions (PIs) that are potential new sources of genetic variation for soybean breeding programs. Genetic distances (GD) among the 105 genotypes analyzed were calculated from 109 polymorphic DNA fragments amplified with random oligonucleotide primers and simple sequence repeat (SSR) primer pairs. Two hierarchical clustering algorithms were combined with data resampling and multidimensional scaling (MDS) to evaluate relationships among the genotypes. Genetic distances ranged from 0.08 to 0.76, with a mean of 0.52. Genotypes were placed in 11 clusters on the basis of a consensus of the different methods utilized. Co-occurrence values calculated from the resampling iterations showed that the stability of clusters varied. The most stable grouping was among ancestors that corresponded with known relationships based on pedigree and maturity. Several groups of PIs are distinct from the majority of the ancestors. These genotypes may be useful to breeders wanting to utilize genetically diverse introductions in soybean improvement.

Text in English

0104|Crop Science Society of America (CSSA)|AL Maize Program|R01JOURN|AJ|3

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org