Knowledge Center Catalog

Local cover image
Local cover image

Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 1998.ISSN:
  • 1435-0653 (Online)
Subject(s): Online resources: In: Crop Science v. 38, no. 1, p. 27-33Summary: In hexaploid wheat (Triticum aestivum L.) disease resistance genes transferred hom alien sources are often associated,vith undesirable traits. Replicated trials using near-isogenic lines of spring wheat 'Seri 82' were conducted for 2 yr under non-moisture stress and simulated moisture stress conditions to determine the effects of the 7DL.7Ag and 1BL.1RS translocations [from Agropyron elongatum (Host) Beauv. and Secale cereale L., respectively] on grain yield and related traits. Mean grain yield of the 1B lines was significantly higher (3.2%) than that of the 1BL.1RS translocation lines in non-moisture stress trials, but not significantly higher in the moisture stress trials. The mean grain yields of the five highest yielding reconstituted Seri 82 genotypes (1BL.1RS) were significantly lower than that of the genotypes without the 1BL.1RS translocation in non-moisture stress (3.2%) and moisture stress (5.2%) conditions. Incorporation of the 7DL.7Ag translocation reused a significant increase (9%) in biomass at han est in non-moisture stress trials. The mean grain yields of the five highest yielding 7DL.7Ag lines were significantly higher (8.2%) than the reconstituted Seri 82 genotypes in non-moisture stress conditions and more than 16% lower under moisture stress. Lower grain yields of the 7DL.7Ag lines under moisture stress could be due to their excessive pre-heading biomass production. Several yield-related traits of the near-isogenic genotypes varied significantly. Presence of each translocation caused lateness and, when present together, the 1BL.1RS and 7DL.7Ag translocations delayed heading and maturity by 7 and 5 d, respectively. The genetic background of the recipient wheat can affect the utility of a translocation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

In hexaploid wheat (Triticum aestivum L.) disease resistance genes transferred hom alien sources are often associated,vith undesirable traits. Replicated trials using near-isogenic lines of spring wheat 'Seri 82' were conducted for 2 yr under non-moisture stress and simulated moisture stress conditions to determine the effects of the 7DL.7Ag and 1BL.1RS translocations [from Agropyron elongatum (Host) Beauv. and Secale cereale L., respectively] on grain yield and related traits. Mean grain yield of the 1B lines was significantly higher (3.2%) than that of the 1BL.1RS translocation lines in non-moisture stress trials, but not significantly higher in the moisture stress trials. The mean grain yields of the five highest yielding reconstituted Seri 82 genotypes (1BL.1RS) were significantly lower than that of the genotypes without the 1BL.1RS translocation in non-moisture stress (3.2%) and moisture stress (5.2%) conditions. Incorporation of the 7DL.7Ag translocation reused a significant increase (9%) in biomass at han est in non-moisture stress trials. The mean grain yields of the five highest yielding 7DL.7Ag lines were significantly higher (8.2%) than the reconstituted Seri 82 genotypes in non-moisture stress conditions and more than 16% lower under moisture stress. Lower grain yields of the 7DL.7Ag lines under moisture stress could be due to their excessive pre-heading biomass production. Several yield-related traits of the near-isogenic genotypes varied significantly. Presence of each translocation caused lateness and, when present together, the 1BL.1RS and 7DL.7Ag translocations delayed heading and maturity by 7 and 5 d, respectively. The genetic background of the recipient wheat can affect the utility of a translocation.

Genetic Resources Program|Global Wheat Program

Text in English

R97-98ANALY|Crop Science Society of America (CSSA)|EE|anterior|9804|1998kelly|FINAL9798|1

CCJL01|INT0610

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org