Normal view MARC view ISBD view

CIMMYT's approach to breed for drought tolerance

By: Rajaram, S.
Contributor(s): Braun, H.J | Ginkel, M. Van.
Material type: materialTypeLabelArticlePublisher: 1996ISSN: 1573-5060 (Revista en electrónico).Subject(s): Drought AGROVOC | Drought resistance | Research projects | Resistance to injurious factors | CIMMYT | Triticum aestivum AGROVOC | Wheats AGROVOC | Plant breeding AGROVOC In: Euphytica v. 92, no. 1-2, p. 147-153Summary: About 32% of the 99 million ha wheat grown in developing countries experiences varying levels of drought stress. Three major drought types have been identified: Late drought (LD) is common in the Mediterranean region, early drought (ED) is found in Latin America and wheat is produced on residual soil moisture (RM) in the Indian subcontinent and part of Australia. Until 1983, CIMMYT selected all germplasm under near optimum conditions for its yield potential and tested only advanced lines under drought. In spite of many critics, this approach proved to be successful, since in the mid 80's CIMMYT germplasm was grown on 45% of the wheat area in LC with annual rainfall from 300-500 mm and on 21% in areas with less than 300 mm. Since 1983, CIMMYT's drought breeding methodology is to alternate segregating populations between drought stressed and fully irrigated conditions (FI) and to test advanced lines under a line source irrigation system. To compare the efficiency of these approach, yield of four, mostly leading varieties, from each of the regions with LD, ED, RM, and FI and twelve recent CIMMYT cultivars selected for high yield under Fl and RM conditions (ALT) were compared under four different moisture regimes (FI, LD, ED, and RM) in 89-90 and 90-91 in Yaqui Valley, Mexico. Genotypic correlation between yield and days to flowering, days to maturity, height, grains m(-2), TKW, test weight and grain fill period were calculated. Mean grain yield of the four best lines in the ALT group was highest under all moisture stress regimes, followed by the FI-group. However, the highest yielding cultivar within each moisture regime was from the FI-group under FI, from the LD-group under LD, and from the ALT-group under ED and RM conditions. Estimates for genetic advance suggest that FI is the best environment for increasing grain yield even in all three drought environments. This indicates that yield potential per se is beneficial also in drought environments. The highest yield in drought environments was realized by the CIM cultivars selected under FI and RM. Simultaneous evaluation of the germplasm under near optimum conditions, to utilize high heritabilities and identify lines with high yield potential, and under stress conditions to preserve alleles for drought tolerance seem at present the best strategyCollection: CIMMYT Staff Publications CollectionCollection: Serials Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

Look under journal title (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0014-2336

About 32% of the 99 million ha wheat grown in developing countries experiences varying levels of drought stress. Three major drought types have been identified: Late drought (LD) is common in the Mediterranean region, early drought (ED) is found in Latin America and wheat is produced on residual soil moisture (RM) in the Indian subcontinent and part of Australia. Until 1983, CIMMYT selected all germplasm under near optimum conditions for its yield potential and tested only advanced lines under drought. In spite of many critics, this approach proved to be successful, since in the mid 80's CIMMYT germplasm was grown on 45% of the wheat area in LC with annual rainfall from 300-500 mm and on 21% in areas with less than 300 mm. Since 1983, CIMMYT's drought breeding methodology is to alternate segregating populations between drought stressed and fully irrigated conditions (FI) and to test advanced lines under a line source irrigation system. To compare the efficiency of these approach, yield of four, mostly leading varieties, from each of the regions with LD, ED, RM, and FI and twelve recent CIMMYT cultivars selected for high yield under Fl and RM conditions (ALT) were compared under four different moisture regimes (FI, LD, ED, and RM) in 89-90 and 90-91 in Yaqui Valley, Mexico. Genotypic correlation between yield and days to flowering, days to maturity, height, grains m(-2), TKW, test weight and grain fill period were calculated. Mean grain yield of the four best lines in the ALT group was highest under all moisture stress regimes, followed by the FI-group. However, the highest yielding cultivar within each moisture regime was from the FI-group under FI, from the LD-group under LD, and from the ALT-group under ED and RM conditions. Estimates for genetic advance suggest that FI is the best environment for increasing grain yield even in all three drought environments. This indicates that yield potential per se is beneficial also in drought environments. The highest yield in drought environments was realized by the CIM cultivars selected under FI and RM. Simultaneous evaluation of the germplasm under near optimum conditions, to utilize high heritabilities and identify lines with high yield potential, and under stress conditions to preserve alleles for drought tolerance seem at present the best strategy

Global Wheat Program

English

R96ANALY|Springer|1

INT0599

CIMMYT Staff Publications Collection

Serials Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org