Normal view MARC view ISBD view

Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval

By: Ribaut, J.M.
Contributor(s): Deutsch, J.A [coaut.] | Gonzalez de Leon, D [coaut.] | Hoisington, D.A [coaut.] | Jiang, C [coaut.].
Material type: materialTypeLabelArticlePublisher: 1996ISSN: 1432-2242 (Revista en electrónico).Subject(s): Drought resistance | Flowering | Injurious factors | Loci AGROVOC | Research projects | Tropical maize CIMMYT | Zea mays AGROVOC In: Theoretical and Applied Genetics v. 92, no. 7, p. 905-914Summary: Drought is an important climatic phenomenon which, after soil infertility, ranks as the second most severe limitation to maize production in developing countries. When drought stress occurs just before or during the flowering period, a delay in silking is observed, resulting in an increase in the length of the anthesis-silking interval (ASI) and in a decrease in grain yield. Selection for reduced ASI in tropical open-pollinated varieties has been shown to be correlated with improved yields under drought stress. Since efficient selection for drought tolerance requires carefully managed experimental conditions, molecular markers were used to identify the genomic segments responsible for the expression of ASI, with the final aim of developing marker-assisted selection (MAS) strategies. An F-2 population of 234 individuals was genotyped at 142 loci and F-3 families were evaluated in the field under several water regimes for male flowering (MFLW), male sterility (STER), female flowering (FFLW) and ASI. The genetic variance of ASI increased as a function of the stress intensity, and the broad-sense heritabilites of MFLW, FFLW and ASI were high under stress conditions, being 86%, 82% and 78%, respectively. Putative cluantitative trait loci (QTLs) involved in the expression of MFLW andlor FFLW under drought were detected on chromesomes 1, 2, 4, 5, 8, 9 and 10, accounting for around 48% of the phenotypic variance for both traits. For ASI, six putative QTLs were identified under drought on chromesomes 1, 2, 5, 6, 8 and 10, and together accounted for approximately 47% of the phenotypic variance. Under water-stress conditions, four QTLs were common for the expression of MFLW and FFLW, one for the expression of ASI and MFLW and four for the expression of ASI and FFLW. The number of common QTLs for two traits was related to the level of linear correlation between these two traits. Segregation for ASI was found to be transgressive with the drought-susceptible parent contributing alleles for reduced ASI (4 days) at two QTL positions. Alleles contributed by the resistant line at the other four QTLs were responsible for a 7-day reduction of ASI. These four QTLs represented around 9% of the linkage map, and were stable over years and stress levels. It is argued that MAS based on ASI QTLs should be a powerful tool for improving drought tolerance of tropical maize inbred linesCollection: CIMMYT Staff Publications CollectionCollection: Serials Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

Look under journal title (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0040-5752

Drought is an important climatic phenomenon which, after soil infertility, ranks as the second most severe limitation to maize production in developing countries. When drought stress occurs just before or during the flowering period, a delay in silking is observed, resulting in an increase in the length of the anthesis-silking interval (ASI) and in a decrease in grain yield. Selection for reduced ASI in tropical open-pollinated varieties has been shown to be correlated with improved yields under drought stress. Since efficient selection for drought tolerance requires carefully managed experimental conditions, molecular markers were used to identify the genomic segments responsible for the expression of ASI, with the final aim of developing marker-assisted selection (MAS) strategies. An F-2 population of 234 individuals was genotyped at 142 loci and F-3 families were evaluated in the field under several water regimes for male flowering (MFLW), male sterility (STER), female flowering (FFLW) and ASI. The genetic variance of ASI increased as a function of the stress intensity, and the broad-sense heritabilites of MFLW, FFLW and ASI were high under stress conditions, being 86%, 82% and 78%, respectively. Putative cluantitative trait loci (QTLs) involved in the expression of MFLW andlor FFLW under drought were detected on chromesomes 1, 2, 4, 5, 8, 9 and 10, accounting for around 48% of the phenotypic variance for both traits. For ASI, six putative QTLs were identified under drought on chromesomes 1, 2, 5, 6, 8 and 10, and together accounted for approximately 47% of the phenotypic variance. Under water-stress conditions, four QTLs were common for the expression of MFLW and FFLW, one for the expression of ASI and MFLW and four for the expression of ASI and FFLW. The number of common QTLs for two traits was related to the level of linear correlation between these two traits. Segregation for ASI was found to be transgressive with the drought-susceptible parent contributing alleles for reduced ASI (4 days) at two QTL positions. Alleles contributed by the resistant line at the other four QTLs were responsible for a 7-day reduction of ASI. These four QTLs represented around 9% of the linkage map, and were stable over years and stress levels. It is argued that MAS based on ASI QTLs should be a powerful tool for improving drought tolerance of tropical maize inbred lines

Generation Challenge Program

English

R96ANALY|Springer|1

INT1991

CIMMYT Staff Publications Collection

Serials Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org