Knowledge Center Catalog

Local cover image
Local cover image

Expression quantitative trait loci mapping heat tolerance during reproductive development in wheat (Triticum aestivum)

By: Contributor(s): Material type: TextTextSeries: Developments in Plant Breeding ; 12Publication details: Dordrecht (Netherlands) Springer : 2007Description: p. 373-382ISBN:
  • 978-1-4020-5496-9
Subject(s): Summary: High temperature during reproductive development is a major limitation to wheat production and end-use quality in the Southern Great Plains (USA) and to wheat production in many environments worldwide. We have initiated a project to integrate genotypic (QTL), phenotypic and transcript level data to identify genes controlling reproductive stage heat tolerance in heat tolerant genotypes of wheat as it relates to yield and end-use quality maintenance. Efforts have initially focused on building recombinant inbred lines (RILs) and cDNA libraries enriched, through suppressive subtractive hybridization, for genes induced by heat stress. The selected tissues for library construction included wheat heads and flag leaves isolated from plants subjected to heat stress 10 days after pollination. A heat tolerant spring wheat cultivar ‘Halberd’, and a susceptible winter wheat cultivar Cutter were used as models to define the two adaptive responses to heat stress (heat avoidance (susceptible) and heat tolerance). Over 1,920 unique ESTs have been sequenced. These genes include some potential regulatory proteins, heat shock proteins and lipid-transfer proteins, as well as many novel genes that may belong to uncharacterized pathways involved in response to heat stress. For example, a lipid transfer protein and an alpha amylase inhibitor remained stable during heat shock in the heat-tolerant cultivar Halberd. These genes were also highly expressed in the most heat tolerant RILs but not in the most susceptible RILs. Expression-QTL mapping results will be presented which link QTLs controlling heat tolerance to their regulation of discrete sets of the plant transcriptome
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode Item holds
Conference proceedings CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-5055 (Browse shelf(Opens below)) 1 Available 634814
Total holds: 0

High temperature during reproductive development is a major limitation to wheat production and end-use quality in the Southern Great Plains (USA) and to wheat production in many environments worldwide. We have initiated a project to integrate genotypic (QTL), phenotypic and transcript level data to identify genes controlling reproductive stage heat tolerance in heat tolerant genotypes of wheat as it relates to yield and end-use quality maintenance. Efforts have initially focused on building recombinant inbred lines (RILs) and cDNA libraries enriched, through suppressive subtractive hybridization, for genes induced by heat stress. The selected tissues for library construction included wheat heads and flag leaves isolated from plants subjected to heat stress 10 days after pollination. A heat tolerant spring wheat cultivar ‘Halberd’, and a susceptible winter wheat cultivar Cutter were used as models to define the two adaptive responses to heat stress (heat avoidance (susceptible) and heat tolerance). Over 1,920 unique ESTs have been sequenced. These genes include some potential regulatory proteins, heat shock proteins and lipid-transfer proteins, as well as many novel genes that may belong to uncharacterized pathways involved in response to heat stress. For example, a lipid transfer protein and an alpha amylase inhibitor remained stable during heat shock in the heat-tolerant cultivar Halberd. These genes were also highly expressed in the most heat tolerant RILs but not in the most susceptible RILs. Expression-QTL mapping results will be presented which link QTLs controlling heat tolerance to their regulation of discrete sets of the plant transcriptome

Global Wheat Program

English

Lucia Segura

INT1511

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org