Chapter 9. Breaking the Yield Barriers to Enhance Genetic Gains in Wheat
Harikrishna
Chapter 9. Breaking the Yield Barriers to Enhance Genetic Gains in Wheat - Singapore : Springer Singapore, 2022. - 48 pages
Wheat is one of the most grown and consumed cereals providing stable energy source to people worldwide. Increase in population and decrease in arable land laid responsibility on the breeder’s shoulder to enhance productivity. In this chapter, we are giving a comprehensive view to enhance the genetic gain by breaking the yield barriers through possible methodologies. To enhance genetic gain, precise phenotyping of population with sufficient genetic diversity with genotypic data using markers is crucial to get a real genetic effect by minimizing the environmental bias. Even though other marker systems are in use, evolution of next-generation sequencing technology gave high-density markers like SNP which can be used in modern marker-based breeding programs. Mapping of QTLs related to higher yield and biotic and abiotic stress tolerance and utilizing them in breeding will certainly help minimize the loss of yield due to stress condition. Marker-assisted breeding like MAS, MABB and MARS can be used to transfer and enhance the frequency of the use of full allele in the population precisely. Time consumption in the mapping can be avoided using a direct marker effect in GEBV-based selection using genomic selection technique, and alteration in the allele combination and complex linkage can be overcome using genome editing. Speed breeding is one of the interesting methods which allows multiple generation per year leading to decreased time period in advancement of breeding material. With all these methods’ successful examples, a scope of hybrid wheat is also described in this chapter.
Text in English
978-981-16-4448-1 978-981-16-4449-8 (Online)
Genetic gain
Breeding
Phenotypes
Quantitative Trait Loci
Wheat
Yields
Chapter 9. Breaking the Yield Barriers to Enhance Genetic Gains in Wheat - Singapore : Springer Singapore, 2022. - 48 pages
Wheat is one of the most grown and consumed cereals providing stable energy source to people worldwide. Increase in population and decrease in arable land laid responsibility on the breeder’s shoulder to enhance productivity. In this chapter, we are giving a comprehensive view to enhance the genetic gain by breaking the yield barriers through possible methodologies. To enhance genetic gain, precise phenotyping of population with sufficient genetic diversity with genotypic data using markers is crucial to get a real genetic effect by minimizing the environmental bias. Even though other marker systems are in use, evolution of next-generation sequencing technology gave high-density markers like SNP which can be used in modern marker-based breeding programs. Mapping of QTLs related to higher yield and biotic and abiotic stress tolerance and utilizing them in breeding will certainly help minimize the loss of yield due to stress condition. Marker-assisted breeding like MAS, MABB and MARS can be used to transfer and enhance the frequency of the use of full allele in the population precisely. Time consumption in the mapping can be avoided using a direct marker effect in GEBV-based selection using genomic selection technique, and alteration in the allele combination and complex linkage can be overcome using genome editing. Speed breeding is one of the interesting methods which allows multiple generation per year leading to decreased time period in advancement of breeding material. With all these methods’ successful examples, a scope of hybrid wheat is also described in this chapter.
Text in English
978-981-16-4448-1 978-981-16-4449-8 (Online)
Genetic gain
Breeding
Phenotypes
Quantitative Trait Loci
Wheat
Yields