Knowledge Center Catalog

Dynamics of soil organic carbon and labile carbon fractions in soil aggregates affected by different tillage managements

Xiaolin Shen

Dynamics of soil organic carbon and labile carbon fractions in soil aggregates affected by different tillage managements - Basel (Switzerland) : MDPI, 2021.

Peer review Open Access

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


Text in English

2071-1050

https://doi.org/10.3390/su13031541


Soil structural units
Soil Organic Carbon
Tillage

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org