Improving wheat yields through n fertilization in Mediterranean Tunisia
Cossani, C.M.
Improving wheat yields through n fertilization in Mediterranean Tunisia - Cambridge (United Kingdom) : Cambridge University Press, 2011.
Peer review Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0014-4797
Rainfed wheat is frequently exposed to periods of water stress that generate low and variable grain yields. Field experiments (with studies in Tunisia and Morocco) carried out in the context of a European research project of co-operation with Mediterranean partner countries (WatNitMED) showed that nitrogen (N) fertilization may be a tool to increase productivity of rainfed wheat in Mediterranean environments. However, most farmers in Northern Africa do not fertilize their rainfed cereals. In the present study, we aimed to analyse whether the generally accepted positive yield response to N fertilization in rainfed Mediterranean conditions corresponds to actual advantages achieved in the fields of working farmers, attempting a further up-scaling of knowledge from field experiments to real fields. We attempted to apply research results to Tunisian working farmers’ fields by conducting a farm pilot experiment. The pilot experiment was conducted in two different regions (a low-yielding region and a relatively high-yielding region) of cereal production in Tunisia, where wheat production represents typical rainfed Mediterranean agro-ecosystems in North Africa. First, we compared the yield response to N fertilization against unfertilized conditions (a common situation for many of the farmers in North Africa), and secondly we compared what the farmers suggested as an optimal N fertilization practice in their fields against the WatNitMED's recommendation which was based on an N-fertilization scheme derived from field experiments from the European research project in Mediterranean conditions. The WatNitMED fertilization scheme suggested higher rates of fertilization than those considered optimal by farmers (on average 40 kg N ha−1 higher). Unfertilized grain yield across both locations ranged from about 1 to 3.5 Mg ha−1 (typical of farmers’ yields in the region), and fertilizing increased grain yields in most situations. Within the two alternative fertilization treatments, WatNitMED fertilization produced higher yields than the fertilization rate considered optimal by farmers. This trend was observed at the low-yielding location as well as at the high-yielding location. These responses demonstrated that fertilization in working farmers’ field conditions may be a reliable means of improving dryland wheat grain and straw yields. They also showed that rates of fertilization regarded as optimal by real farmers were below the optimum for these regions.
Text in English
0014-4797 1469-4441 (Online)
https://doi.org/10.1017/S0014479711000044
Improving wheat yields through n fertilization in Mediterranean Tunisia - Cambridge (United Kingdom) : Cambridge University Press, 2011.
Peer review Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0014-4797
Rainfed wheat is frequently exposed to periods of water stress that generate low and variable grain yields. Field experiments (with studies in Tunisia and Morocco) carried out in the context of a European research project of co-operation with Mediterranean partner countries (WatNitMED) showed that nitrogen (N) fertilization may be a tool to increase productivity of rainfed wheat in Mediterranean environments. However, most farmers in Northern Africa do not fertilize their rainfed cereals. In the present study, we aimed to analyse whether the generally accepted positive yield response to N fertilization in rainfed Mediterranean conditions corresponds to actual advantages achieved in the fields of working farmers, attempting a further up-scaling of knowledge from field experiments to real fields. We attempted to apply research results to Tunisian working farmers’ fields by conducting a farm pilot experiment. The pilot experiment was conducted in two different regions (a low-yielding region and a relatively high-yielding region) of cereal production in Tunisia, where wheat production represents typical rainfed Mediterranean agro-ecosystems in North Africa. First, we compared the yield response to N fertilization against unfertilized conditions (a common situation for many of the farmers in North Africa), and secondly we compared what the farmers suggested as an optimal N fertilization practice in their fields against the WatNitMED's recommendation which was based on an N-fertilization scheme derived from field experiments from the European research project in Mediterranean conditions. The WatNitMED fertilization scheme suggested higher rates of fertilization than those considered optimal by farmers (on average 40 kg N ha−1 higher). Unfertilized grain yield across both locations ranged from about 1 to 3.5 Mg ha−1 (typical of farmers’ yields in the region), and fertilizing increased grain yields in most situations. Within the two alternative fertilization treatments, WatNitMED fertilization produced higher yields than the fertilization rate considered optimal by farmers. This trend was observed at the low-yielding location as well as at the high-yielding location. These responses demonstrated that fertilization in working farmers’ field conditions may be a reliable means of improving dryland wheat grain and straw yields. They also showed that rates of fertilization regarded as optimal by real farmers were below the optimum for these regions.
Text in English
0014-4797 1469-4441 (Online)
https://doi.org/10.1017/S0014479711000044