Applying innovations and new technologies for international collaborative wheat improvement
Reynolds, M.P.
Applying innovations and new technologies for international collaborative wheat improvement - United Kingdom : Cambridge University Press, 2006. - Printed|Computer File
Peer review
Despite the successes of the Green Revolution, about a billion people are still undernourished and food security in the developing world faces new challenges in terms of population growth, reduced water resources, climate change and decreased public sector investment. It is also becoming widely recognized that poverty is a cause of environmental degradation, conflict and civil unrest. Internationally coordinated agricultural research can play a significant role in improving food security by deploying promising new technologies as well as adapting those with well-established impact. In addition to the genetic challenges of crop improvement, agriculturalists must also embrace the problems associated with a highly heterogeneous and unpredictable environment. Not only are new genetic tools becoming more accessible, but a new generation of quantitative tools are available to enable better definition of agro-ecosystems, of cultivar by environment interactions, and of socio-economic issues, while satellite imagery can help predict crop yields on large scales. Identifying areas of low genetic diversity – for example as found in large tracts of South Asia – is an important aspect of reducing vulnerability to disease epidemics. Global strategies for incorporating durable disease resistance genes into a wider genetic background, as well as participatory approaches that deliver a fuller range of options to farmers, are being implemented to increase cultivar diversity. The unpredictable effects of environment on productivity can be buffered somewhat by crop management practices that maintain healthy soils, while reversing the consequences of rapid agricultural intensification on soil degradation. Conservation agriculture is an alternative strategy that is especially pertinent for resource-poor farmers. The potential synergy between genetic improvement and innovative crop management practices has been referred to as the Doubly Green Revolution. The unique benefits and efficiency of the international collaborative platform are indisputable when considering the duplications that otherwise would have been required to achieve the same impacts through unilateral or even bilateral programmes. Furthermore, while the West takes for granted public support for crucial economic and social issues, this is not the case in a number of less-developed countries where the activities of International Agricultural Research Centres (IARCs) and other development assistance organizations can provide continuity in agricultural research and infrastructure.
Text in English
0021-8596 1469-5146 (Online)
https://doi.org/10.1017/S0021859606005879
Wheat
Research
International cooperation
Green Revolution
Crop improvement
Food security
Applying innovations and new technologies for international collaborative wheat improvement - United Kingdom : Cambridge University Press, 2006. - Printed|Computer File
Peer review
Despite the successes of the Green Revolution, about a billion people are still undernourished and food security in the developing world faces new challenges in terms of population growth, reduced water resources, climate change and decreased public sector investment. It is also becoming widely recognized that poverty is a cause of environmental degradation, conflict and civil unrest. Internationally coordinated agricultural research can play a significant role in improving food security by deploying promising new technologies as well as adapting those with well-established impact. In addition to the genetic challenges of crop improvement, agriculturalists must also embrace the problems associated with a highly heterogeneous and unpredictable environment. Not only are new genetic tools becoming more accessible, but a new generation of quantitative tools are available to enable better definition of agro-ecosystems, of cultivar by environment interactions, and of socio-economic issues, while satellite imagery can help predict crop yields on large scales. Identifying areas of low genetic diversity – for example as found in large tracts of South Asia – is an important aspect of reducing vulnerability to disease epidemics. Global strategies for incorporating durable disease resistance genes into a wider genetic background, as well as participatory approaches that deliver a fuller range of options to farmers, are being implemented to increase cultivar diversity. The unpredictable effects of environment on productivity can be buffered somewhat by crop management practices that maintain healthy soils, while reversing the consequences of rapid agricultural intensification on soil degradation. Conservation agriculture is an alternative strategy that is especially pertinent for resource-poor farmers. The potential synergy between genetic improvement and innovative crop management practices has been referred to as the Doubly Green Revolution. The unique benefits and efficiency of the international collaborative platform are indisputable when considering the duplications that otherwise would have been required to achieve the same impacts through unilateral or even bilateral programmes. Furthermore, while the West takes for granted public support for crucial economic and social issues, this is not the case in a number of less-developed countries where the activities of International Agricultural Research Centres (IARCs) and other development assistance organizations can provide continuity in agricultural research and infrastructure.
Text in English
0021-8596 1469-5146 (Online)
https://doi.org/10.1017/S0021859606005879
Wheat
Research
International cooperation
Green Revolution
Crop improvement
Food security