Knowledge Center Catalog

Local cover image
Local cover image

Identification and validation of a major QTL on chromosome 2A for wheat-Parastagonospora nodorum interactions

By: Contributor(s): Material type: ArticleLanguage: English Publication details: London (United Kingdom) : BMC, 2025.ISSN:
  • 2524-4167
Subject(s): Online resources: In: Phytopathology Research London (United Kingdom) : BMC, 2025. v. 7, art. 82Summary: Wheat (Triticum aestivum L.) is frequently affected by Septoria nodorum blotch (SNB), a fungal disease that significantly reduces wheat yields. In this study, two recombinant inbred line (RIL) populations, developed from crosses involving two elite CIMMYT breeding lines (WUYA and KATH) and a common susceptible male parent (CIANO T79), were used to detect quantitative trait loci (QTL) associated with SNB resistance. High-density genetic maps were constructed for these RIL populations by incorporating presence/absence variation (PAV) markers using the DArTseq genotyping platform. Three major and stable QTL linked to SNB resistance were identified on chromosomes 2A, 4B, and 5B. Among these, QSnb.cim-2A accounted for 22.16%–28.74% and 17.62%–19.71% of the phenotypic variation in the WUYA/CIANO T79 and KATH/CIANO T79 populations, respectively, and it was also validated in the CASCABEL/CIANO T79 RIL population. The remaining two QTL, QSnb.cim-4B and QSnb.cim-5B, were found to be associated with Rht-B1b and tsn1, respectively. The combined effect of these three QTL significantly improved SNB resistance while also reducing plant height, indicating their promising utilization in wheat breeding programs.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Wheat (Triticum aestivum L.) is frequently affected by Septoria nodorum blotch (SNB), a fungal disease that significantly reduces wheat yields. In this study, two recombinant inbred line (RIL) populations, developed from crosses involving two elite CIMMYT breeding lines (WUYA and KATH) and a common susceptible male parent (CIANO T79), were used to detect quantitative trait loci (QTL) associated with SNB resistance. High-density genetic maps were constructed for these RIL populations by incorporating presence/absence variation (PAV) markers using the DArTseq genotyping platform. Three major and stable QTL linked to SNB resistance were identified on chromosomes 2A, 4B, and 5B. Among these, QSnb.cim-2A accounted for 22.16%–28.74% and 17.62%–19.71% of the phenotypic variation in the WUYA/CIANO T79 and KATH/CIANO T79 populations, respectively, and it was also validated in the CASCABEL/CIANO T79 RIL population. The remaining two QTL, QSnb.cim-4B and QSnb.cim-5B, were found to be associated with Rht-B1b and tsn1, respectively. The combined effect of these three QTL significantly improved SNB resistance while also reducing plant height, indicating their promising utilization in wheat breeding programs.

Text in English

Climate adaptation & mitigation Nutrition, health & food security Breeding Resources Accelerated Breeding Plant Health Resilient Agrifood Systems Genetic Innovation Bill & Melinda Gates Foundation (BMGF) United States Agency for International Development (USAID) Breeding for Tomorrow

https://hdl.handle.net/10568/178355

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org