Knowledge Center Catalog

Local cover image
Local cover image

Bayesian divergence-based approach for genomic multitrait ordinal selection

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Bethesda, MD (United States of America) : Oxford University Press, 2025.ISSN:
  • 2160-1836 (Online)
Subject(s): Online resources: In: G3: Genes, Genomes, Genetics Bethesda, MD (United States of America) : Oxford University Press, 2025. v. 15, no. 10, p. jkaf183Summary: Effective genomic selection for ordinal traits, such as disease resistance scores, is a persistent challenge in plant breeding due to the discrete, ordered nature of these phenotypes. This study presents a novel Bayesian divergence-based framework for multitrait ordinal selection, implemented in the extended Multitrait Parental Selection R package (MPS-R). By leveraging decision-theoretic loss functions, including the Kullback–Leibler (KL) divergence, Bhattacharyya distance, and Hellinger distance, our approach quantifies the distance between candidate distributions and breeder-defined target distributions. Through extensive simulations under 6 scenarios combining different genetic correlation structures and heritability levels, we demonstrate the comparative performance of each loss function. KL divergence consistently yielded superior genetic gains, especially in moderate heritability settings. Additionally, random sampling validation using real wheat disease resistance data confirmed the utility of these methods in practical breeding contexts. The MPS-R package implements this methodology through user-friendly functions tailored for ordinal trait selection in breeding applications. Our results demonstrate that this toolset provides a flexible, robust, and biologically grounded framework to enhance selection efficiency in breeding programs targeting complex, multitrait ordinal phenotypes. A couple of limitations employed by the simulation scheme used on the study are also discussed.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Effective genomic selection for ordinal traits, such as disease resistance scores, is a persistent challenge in plant breeding due to the discrete, ordered nature of these phenotypes. This study presents a novel Bayesian divergence-based framework for multitrait ordinal selection, implemented in the extended Multitrait Parental Selection R package (MPS-R). By leveraging decision-theoretic loss functions, including the Kullback–Leibler (KL) divergence, Bhattacharyya distance, and Hellinger distance, our approach quantifies the distance between candidate distributions and breeder-defined target distributions. Through extensive simulations under 6 scenarios combining different genetic correlation structures and heritability levels, we demonstrate the comparative performance of each loss function. KL divergence consistently yielded superior genetic gains, especially in moderate heritability settings. Additionally, random sampling validation using real wheat disease resistance data confirmed the utility of these methods in practical breeding contexts. The MPS-R package implements this methodology through user-friendly functions tailored for ordinal trait selection in breeding applications. Our results demonstrate that this toolset provides a flexible, robust, and biologically grounded framework to enhance selection efficiency in breeding programs targeting complex, multitrait ordinal phenotypes. A couple of limitations employed by the simulation scheme used on the study are also discussed.

Text in English

Villar-Hernandez, B.d.J. : Not in IRS staff list but CIMMYT Affiliation

Lozano-Ramirez, N. : Not in IRS staff list but CIMMYT Affiliation

Bill & Melinda Gates Foundation (BMGF) Accelerating Genetic Gains in Maize and Wheat (AGG) United States Agency for International Development (USAID) Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) Breeding for Tomorrow

https://hdl.handle.net/10568/179091

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org