Harnessing novel genetic markers for scald resistance from gene bank spring barley genotypes
Material type:
ArticleLanguage: English Publication details: United Kingdom : BioMed Central Ltd., 2025.ISSN: - 1471-2229
| Item type | Current library | Collection | Status | |
|---|---|---|---|---|
| Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | Available |
Peer review
Open Access
Background: Scald caused by Rhynchosporium graminicola is a common foliar disease affecting barley production worldwide. Identifying and utilizing scald resistance genes and quantitative trait loci (QTL) to develop barley cultivars with durable and effective resistance to scald is crucial. Results: In the present study, we evaluated 275 spring barley genotypes together with 4 commercial check cultivars under controlled conditions and examined the underlying genetics of scald resistance in these genotypes. A significant genetic variation (P value < 0.0001) for scald resistance was observed among the tested barley germplasms. A genome-wide association study (GWAS) identified eight markers-trait associations (MTAs) forming seven QTL located on chromosomes 3H, 6H, and 7H, of which three are novel. The allelic effects of these MTAs were further examined, and favorable alleles associated with scald resistance were identified. Conclusions: The identification of QTL for scald resistance, along with favorable allele identification, will be crucial for marker-assisted breeding programs. These findings will facilitate the development of new scald-resistant cultivars and contribute to the sustainability of barley production. Further studies, such as fine-mapping of candidate genes within these identified QTL regions, will help to narrow down the potential causative genetic variants and understand their functional effects on scald resistance.
Text in English
Swedish University of Agricultural Sciences (SLU) Breeding for Tomorrow