Knowledge Center Catalog

Local cover image
Local cover image

Improving wheat grain yield genomic prediction accuracy using historical data

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Bethesda, MD (United States of America) : Oxford University Press, 2025.ISSN:
  • 2160-1836
Subject(s): Online resources: In: G3: Genes, Genomes, Genetics Bethesda, MD (United States of America) : Oxford University Press, 2025 v. 15, no. 4, art. jkaf038Summary: Genomic selection is an essential tool to improve genetic gain in wheat breeding. This study aimed to enhance prediction accuracy for grain yield across various selection environments using CIMMYT's (International Maize and Wheat Improvement Center) historical dataset. Ten years of grain yield data from 6 selection environments were analyzed, with the populations of 5 years (2018-2023) as the validation population and earlier years (back to 2013-2014) as the training population. Generally, we observed that as the number of training years increased, the prediction accuracy tended to improve or stabilize. For instance, in the late heat stress selection environment (beds late heat stress), prediction accuracy increased from 0.11 (1 training year) to 0.23 (5 years), stabilizing at 0.26. Similar trends were observed in the intermediate drought selection environment (beds with 2 irrigations), with prediction accuracy rising from 0.12 (1 year) to 0.21 (4 years) but minimal improvement beyond that. Conversely, some selection environments, such as flat 5 irrigations (flat optimal environment), did not significantly increase, with the prediction accuracy fluctuating around 0.09-0.14 regardless of the number of training years used. Additionally, average genetic diversity within the training population and the validation population influenced prediction accuracy. Indeed, a negative correlation between prediction accuracy and the genetic distance was observed. This highlights the need to balance genetic diversity to enhance the predictive power of genomic selection models. These findings exhibit the benefits of using an extended historical dataset while considering genetic diversity to maximize prediction accuracy in genomic selection strategies for wheat breeding, ultimately supporting the development of high-yielding varieties.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Genomic selection is an essential tool to improve genetic gain in wheat breeding. This study aimed to enhance prediction accuracy for grain yield across various selection environments using CIMMYT's (International Maize and Wheat Improvement Center) historical dataset. Ten years of grain yield data from 6 selection environments were analyzed, with the populations of 5 years (2018-2023) as the validation population and earlier years (back to 2013-2014) as the training population. Generally, we observed that as the number of training years increased, the prediction accuracy tended to improve or stabilize. For instance, in the late heat stress selection environment (beds late heat stress), prediction accuracy increased from 0.11 (1 training year) to 0.23 (5 years), stabilizing at 0.26. Similar trends were observed in the intermediate drought selection environment (beds with 2 irrigations), with prediction accuracy rising from 0.12 (1 year) to 0.21 (4 years) but minimal improvement beyond that. Conversely, some selection environments, such as flat 5 irrigations (flat optimal environment), did not significantly increase, with the prediction accuracy fluctuating around 0.09-0.14 regardless of the number of training years used. Additionally, average genetic diversity within the training population and the validation population influenced prediction accuracy. Indeed, a negative correlation between prediction accuracy and the genetic distance was observed. This highlights the need to balance genetic diversity to enhance the predictive power of genomic selection models. These findings exhibit the benefits of using an extended historical dataset while considering genetic diversity to maximize prediction accuracy in genomic selection strategies for wheat breeding, ultimately supporting the development of high-yielding varieties.

Text in English

Montesinos-Lopez, O.A. ; Not in IRS staff list but CIMMYT Affiliation

Bill & Melinda Gates Foundation (BMGF) Accelerating Genetic Gains in Maize and Wheat (AGG) Breeding for Tomorrow

https://hdl.handle.net/10568/179135

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org