Knowledge Center Catalog

Local cover image
Local cover image

Precision nutrient rates and placement in conservation maize-wheat system : effects on crop productivity, profitability, nutrient-use efficiency, and environmental footprints

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Basel (Switzerland) : MDPI, 2021.ISSN:
  • 2073-4395
Subject(s): Online resources: In: Agronomy Basel (Switzerland) : MDPI, 2021. v. 11, no. 11, art. 2320Summary: Intensive tillage-based production systems coupled with inefficient fertilizer management practices have led to increased production costs, sub-optimal productivity, and significant environmental externalities. Conservation agriculture (CA) is being increasingly advocated as a management strategy to overcome these issues but precision nutrient management under the CA-based maize-wheat system is rarely studied. Two year’s (2014–2015 and 2015–2016) research was conducted at the research farm of BISA, Pusa, Bihar, India to develop precision nutrient management practices for CA-based management in the maize-wheat system. Seven treatment combinations involving (i) tillage (conventional tillage; CT & permanent beds; PB) and (ii) nutrient management rates, application methods (farmers’ fertilizer practices; FFP, state recommended dose of fertilizer; SR and precision nutrient management using Nutrient Expert tool; NE and GreenSeeker; (GS), applied using two methods; broadcasting (B) and drilling (D)) were investigated for multiple parameters. The results showed that NE, NE+GS, and SR-based nutrient management tactics with drilling improved crop yields, nutrient-use efficiency (NUE), and economic profitability relative to NE-broadcasting, SR broadcasting, and FFP broadcasting methods. Maize-wheat system productivity and net returns under NE+GS-drilling on PB were significantly higher by 31.2%, 49.7% compared to FFP-broadcasting method, respectively. Total global warming potential (GWP) was lower in the PB-based maize-wheat system coupled with precision nutrient management compared to CT-based maize-wheat system with FFP. Higher (15.2%) carbon sustainability index (CSI) was recorded with NE-drilling compared to FFP-broadcasting method. Results suggests that PB-based maize-wheat system together with precision nutrient management approaches (NE+GS+drilling) can significantly increase crop yields, NUE, and profitability while reducing the emission of greenhouse gases (GHGs) from maize-wheat systems in eastern Indo Gangetic Plains (IGP).
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Intensive tillage-based production systems coupled with inefficient fertilizer management practices have led to increased production costs, sub-optimal productivity, and significant environmental externalities. Conservation agriculture (CA) is being increasingly advocated as a management strategy to overcome these issues but precision nutrient management under the CA-based maize-wheat system is rarely studied. Two year’s (2014–2015 and 2015–2016) research was conducted at the research farm of BISA, Pusa, Bihar, India to develop precision nutrient management practices for CA-based management in the maize-wheat system. Seven treatment combinations involving (i) tillage (conventional tillage; CT & permanent beds; PB) and (ii) nutrient management rates, application methods (farmers’ fertilizer practices; FFP, state recommended dose of fertilizer; SR and precision nutrient management using Nutrient Expert tool; NE and GreenSeeker; (GS), applied using two methods; broadcasting (B) and drilling (D)) were investigated for multiple parameters. The results showed that NE, NE+GS, and SR-based nutrient management tactics with drilling improved crop yields, nutrient-use efficiency (NUE), and economic profitability relative to NE-broadcasting, SR broadcasting, and FFP broadcasting methods. Maize-wheat system productivity and net returns under NE+GS-drilling on PB were significantly higher by 31.2%, 49.7% compared to FFP-broadcasting method, respectively. Total global warming potential (GWP) was lower in the PB-based maize-wheat system coupled with precision nutrient management compared to CT-based maize-wheat system with FFP. Higher (15.2%) carbon sustainability index (CSI) was recorded with NE-drilling compared to FFP-broadcasting method. Results suggests that PB-based maize-wheat system together with precision nutrient management approaches (NE+GS+drilling) can significantly increase crop yields, NUE, and profitability while reducing the emission of greenhouse gases (GHGs) from maize-wheat systems in eastern Indo Gangetic Plains (IGP).

Text in English

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org