Knowledge Center Catalog

Local cover image
Local cover image

The rhizosheath : a potential root trait helping plants to tolerate drought stress

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2019.ISSN:
  • 0032-079X
  • 1573-5036 (Online)
Subject(s): In: Plant and Soil Dordrecht (Netherlands) : Springer, 2019. v. 445, no. 1-2, p. 565-575Summary: Aims. Rhizosheath is known as a layer of adhering soil particle to the root surface. Despite several speculations, the positive function of rhizosheath in acquisition of water and nutrients from drying soil has not yet been experimentally proven. The objective of this study was to experimentally show whether an enhanced rhizosheath formation could help plants to better access water from drying soil. Methods. Eight wheat cultivars were grown in a sandy-loam soil. When plants were 35 days old let dry soil to a water content at which evident wilting symptoms appeared on the plant leaves. During this drying cycle, soil water content and transpiration rate of plants were gravimetrically measured by weighing the plant pots. At the end of this drying cycle, the roots were excavated out of the soil and the rhizosheath formation was gravimetrically quantified by weighing the soil attached to the root system. Results. The results showed that plant cultivars with greater rhizosheath formation could sustain higher transpiration rates at dry condition (water content of 0.07 cm3 cm−3) while the plant cultivars with lower rhizosheath formation suffered from drought stress and reached their permanent wilting points at the same water content. Conclusion. The findings of this study gathered evidence that under severe drought condition plant cultivars with an enhanced rhizosheath formation could better survive by sustaining their transpirational and nutritional demands.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Aims. Rhizosheath is known as a layer of adhering soil particle to the root surface. Despite several speculations, the positive function of rhizosheath in acquisition of water and nutrients from drying soil has not yet been experimentally proven. The objective of this study was to experimentally show whether an enhanced rhizosheath formation could help plants to better access water from drying soil. Methods. Eight wheat cultivars were grown in a sandy-loam soil. When plants were 35 days old let dry soil to a water content at which evident wilting symptoms appeared on the plant leaves. During this drying cycle, soil water content and transpiration rate of plants were gravimetrically measured by weighing the plant pots. At the end of this drying cycle, the roots were excavated out of the soil and the rhizosheath formation was gravimetrically quantified by weighing the soil attached to the root system. Results. The results showed that plant cultivars with greater rhizosheath formation could sustain higher transpiration rates at dry condition (water content of 0.07 cm3 cm−3) while the plant cultivars with lower rhizosheath formation suffered from drought stress and reached their permanent wilting points at the same water content. Conclusion. The findings of this study gathered evidence that under severe drought condition plant cultivars with an enhanced rhizosheath formation could better survive by sustaining their transpirational and nutritional demands.

Text in English

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org