Normal view MARC view ISBD view

Different ways to cut a cake : comparing expert-based and statistical typologies to target sustainable intensification technologies, a case-study in Southern Ethiopia

by Berre, D; Baudron, F; Kassie, M; Craufurd, P.
Material type: materialTypeLabelArticlePublisher: United Kingdom : Cambridge University Press, 2016Subject(s): Intensification | Sustainable agriculture In: Experimental Agriculture In pressSummary: Understanding farm diversity is essential to delineate recommendation domains for new technologies, but diversity is a subjective concept, and can be described differently depending on the way it is perceived. Historically, new technologies have been targeted primarily based on agro-ecological conditions, largely ignoring socioeconomic conditions. Based on 273 farm households’ surveys in Ethiopia, we compare two approaches for the delineation of farm type recommendation domains for crop and livestock technologies: one based on expert knowledge and one based on statistical methods. The expert-based typology used a simple discriminant key for stakeholders in the field to define four farm types based on Tropical Livestock Unit, total cultivated surface and the ratio of these two indicators. This simple key took only a few minutes to make inferences about the potential of adoption of crop and livestock technologies. The PCA-HC analysis included a greater number of variables describing the farm (land use, household size, cattle, fertilizer, off-farm work, hiring labour, production). This analysis emphasized the multi-dimensional potential of such a statistical approach and, in principle, its usefulness to grasp the full complexity of farming systems to identify their needs in crop and livestock technologies. A sub-sampling approach was used to test the impact of data selection on the diversity represented in the statistical approach. Our results show that diversity structure is significantly impacted according to the choice of a sub-sample of 15 of the 20 variables available. This paper shows the complementarity of the two approaches and demonstrates the influence of data selection within large baseline data sets on the total diversity represented in the clusters identified.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Location Collection Call number Status Date due Barcode Item holds
Journal article
CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Open resource

Peer review

Understanding farm diversity is essential to delineate recommendation domains for new technologies, but diversity is a subjective concept, and can be described differently depending on the way it is perceived. Historically, new technologies have been targeted primarily based on agro-ecological conditions, largely ignoring socioeconomic conditions. Based on 273 farm households’ surveys in Ethiopia, we compare two approaches for the delineation of farm type recommendation domains for crop and livestock technologies: one based on expert knowledge and one based on statistical methods. The expert-based typology used a simple discriminant key for stakeholders in the field to define four farm types based on Tropical Livestock Unit, total cultivated surface and the ratio of these two indicators. This simple key took only a few minutes to make inferences about the potential of adoption of crop and livestock technologies. The PCA-HC analysis included a greater number of variables describing the farm (land use, household size, cattle, fertilizer, off-farm work, hiring labour, production). This analysis emphasized the multi-dimensional potential of such a statistical approach and, in principle, its usefulness to grasp the full complexity of farming systems to identify their needs in crop and livestock technologies. A sub-sampling approach was used to test the impact of data selection on the diversity represented in the statistical approach. Our results show that diversity structure is significantly impacted according to the choice of a sub-sample of 15 of the 20 variables available. This paper shows the complementarity of the two approaches and demonstrates the influence of data selection within large baseline data sets on the total diversity represented in the clusters identified.

Wheat CRP FP1 - Maximizing value for money, social inclusivity through prioritizing WHEAT R4D investments

Text in English

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org