Normal view MARC view ISBD view

Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem

by Parihar, C.M; Jat, S.L; Singh, A.K; Majumdar, K; Jat, M.L; Saharawat, Y.S; Pradhan, S; Kuri, B.R.
Material type: materialTypeLabelArticlePublisher: United Kingdom : Elsevier, 2017Subject(s): Water use efficiency | Conservation agriculture | Maize | Wheats | Mung beansOnline resources: Open Access through Dspace In: Energy v. 119, p. 245-256Summary: The maize-wheat-mungbean (MWMb) cropping system is being advocated as an alternative to the traditional rice-based cropping systems of north-western Indo-Gangetic Plains (IGP) to address the issues of energy and nutritional scarcity, residue burning, decline in biomass productivity and water tables. In semi-arid regions, the climate-change-induced variability in rainfall and temperature may have an impact on phenological responses of cereals and pulses which in turn would affect biomass production, economic yield and energy and water-use efficiency (WUE) of the crops. Henceforth, quantification of bioequivalent yields, energy requirement, economics and WUE of MWMb system is essentially required owing to have better understanding of this cropping system. Following a 4-year study was conducted under different tillage and nutrient management. ZT and PB plots had significantly higher pooled average (17.2e20.3%) biomass productivity, (34.4e39.8%) net returns and (49.8e66.2%) biomass water-use efficiency with lesser (8.5e16.1%) water-use than the CT plots. Significantly higher pooled bioenergetic yields (21.7e35.2%), net returns (31.4e37.8%) and biomass water-use efficiency (30.1e35.2%) was observed in SSNM/Ad-hoc plots compared with FFP plots. The total pooled energy input in ZT/PB and SSNM/Ad-hoc plots was significant (P < 0.05) higher than CT and FFP plots, respectively, with greater net energy output, energy productivity and energy efficiency. The interactions between tillage and nutrient management practices on pooled input energy and energy productivity of MWMb system was significant (P < 0.05). Thus, adoption of conservation tillage (ZT/PB) practices with improved nutrient management (SSNM/Ad-hoc) could be a viable option for achieving higher biomass productivity, water and energy-use efficiency and profitability in MWMb system.
CCAFS
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Location Collection Call number Status Date due Barcode Item holds
Journal article
CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

The maize-wheat-mungbean (MWMb) cropping system is being advocated as an alternative to the traditional rice-based cropping systems of north-western Indo-Gangetic Plains (IGP) to address the issues of energy and nutritional scarcity, residue burning, decline in biomass productivity and water tables. In semi-arid regions, the climate-change-induced variability in rainfall and temperature may have an impact on phenological responses of cereals and pulses which in turn would affect biomass production, economic yield and energy and water-use efficiency (WUE) of the crops. Henceforth, quantification of bioequivalent yields, energy requirement, economics and WUE of MWMb system is essentially required owing to have better understanding of this cropping system. Following a 4-year study was conducted under different tillage and nutrient management. ZT and PB plots had significantly higher pooled average (17.2e20.3%) biomass productivity, (34.4e39.8%) net returns and (49.8e66.2%) biomass water-use efficiency with lesser (8.5e16.1%) water-use than the CT plots. Significantly higher pooled bioenergetic yields (21.7e35.2%), net returns (31.4e37.8%) and biomass water-use efficiency (30.1e35.2%) was observed in SSNM/Ad-hoc plots compared with FFP plots. The total pooled energy input in ZT/PB and SSNM/Ad-hoc plots was significant (P < 0.05) higher than CT and FFP plots, respectively, with greater net energy output, energy productivity and energy efficiency. The interactions between tillage and nutrient management practices on pooled input energy and energy productivity of MWMb system was significant (P < 0.05). Thus, adoption of conservation tillage (ZT/PB) practices with improved nutrient management (SSNM/Ad-hoc) could be a viable option for achieving higher biomass productivity, water and energy-use efficiency and profitability in MWMb system.

CCAFS

Text in English

CIMMYT Informa: 1986 (March 9, 2017) CIMMYT Informa: 1988 (April 6, 2017)

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org